Mathématiques - Devoir Surveillé 3 Vendredi 2 juin 2017 - Durée : 1h30

Tous documents et appareils électroniques sont interdits.

Toute réponse doit être rigoureusement justifiée et une attention particulière sera portée à la rédaction et à la présentation.

Exercice 1 Les questions 1., 2. et 3. suivantes sont indépendantes et peuvent être traitées séparément.

1. On considère la suite (u_n) définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n}{2} + \frac{1}{3} \text{ pour tout } n \ge 0 \end{cases}$$

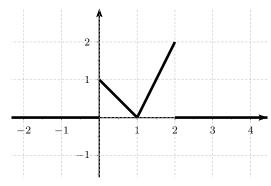
- (a) Calculez u_1 , u_2 et u_3 .
- (b) Montrez que la suite $v_n = u_n \frac{2}{3}$ est une suite géométrique dont on précisera le premier terme et la raison.
- (c) En déduire l'expression de (u_n) en fonction de n.
- (d) Calculez $u_2 + u_3 + \cdots + u_{100}$ (on simplifier l'expression obtenue au maximum!).
- 2. On considère la suite définie par $w_n = -\frac{1}{2} + \sum_{k=1}^n \frac{1}{3^k}$.
 - (a) Exprimez w_n sans utiliser le symbole \sum .
 - (b) La suite (w_n) est-elle arithmétique? géométrique? Si oui, on précisera la raison.
- 3. Soit (u_n) une suite arithmétique telle que $u_3 = 12$ et $u_8 = 0$. Exprimez u_n en fonction de n.

Exercice 2 Les questions 1. et 2. sont indépendantes.

1. Tracer la représentation graphique de la fonction f :

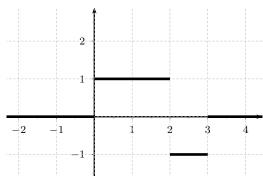
$$f(t) = (t+1)\mathcal{U}(t-1) - 2t\mathcal{U}(t-2) + (t-1)\mathcal{U}(t-3)$$

2. Déterminer, en utilisant la fonction échelon, l'expression de la fonction g dont la courbe est



Exercice 3 Déterminer la transformée de Laplace pour chacune des fonctions suivantes :

1. f est la fonction nulle sur $]-\infty;0[\cup]3;+\infty[$ et dont la courbe est



2.
$$g(t) = \frac{t^4 - 6t}{3} \times \mathcal{U}(t)$$

3.
$$h(t) = e^{3t} \times \mathcal{U}(t-2)$$
.

4.
$$k(t) = e^{-3t} \sin(5t) \mathcal{U}(t)$$
.

5. Sachant qu'on a la formule suivante :

$$\mathcal{L}_{tf(t)}(p) = -\mathcal{L}'_{f(t)}(p)$$

que l'on peut traduire par : la transformée de Laplace de t fois f(t) est l'opposée de la dérivée de la transformée de f.

Calculer la transformée de $v(t) = t \cos(2t)\mathcal{U}(t)$.

Les questions suivantes sont indépendantes et peuvent être traitées séparément. Exercice 4

1. (a) Soit
$$X > 1$$
. Calculez $\int_1^X e^{-t} dt$.

(b) En déduire la nature* de
$$\int_1^{+\infty} e^{-t} |\cos(t)| dt$$
.

2. (a) Soit
$$X > e$$
. Calculez $\int_e^X \frac{1}{t \ln^2(t)} dt$ en posant le changement de variable $u = \ln(t)$.

(b) En déduire la nature* de
$$\int_e^{+\infty} \frac{1}{t \ln^2(t)} dt$$
.

3. Déterminer la nature des intégrales suivantes :

(a)
$$\int_{1}^{+\infty} \frac{t+1}{(t+3)(t+1)} dt$$
, (b) $\int_{1}^{+\infty} \frac{e^{-t^2}}{\sqrt{t}} dt$,

(b)
$$\int_{1}^{+\infty} \frac{e^{-t^2}}{\sqrt{t}} dt,$$

(c)
$$\int_1^{+\infty} \sqrt{t} \sin\left(\frac{1}{t^2}\right) dt$$
.

4. (a) Soit X > 1. Montrez que :

$$\int_{1}^{X} \frac{\ln(t)}{t^{2}} dt = \left[-\frac{\ln(t)}{t} \right]_{1}^{X} + \int_{1}^{X} \frac{1}{t^{2}} dt.$$

(b) En déduire la nature* de $\int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt$.

^{*} dire si l'intégrale converge ou diverge