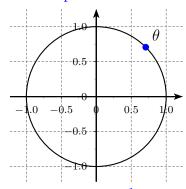
Nom: Prénom: Groupe:

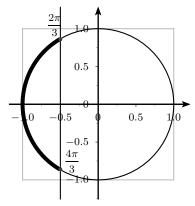
Mathématiques - Devoir Surveillé 2 - Correction Vendredi 17 novembre 2023 - Durée : 1h30

Tout document et appareil électronique est interdit


Toute réponse doit être rigoureusement justifiée et une attention particulière sera portée à la rédaction et à la présentation.

Exercice 1

1. (a) Donner la mesure principale de l'angle $\theta = \frac{-2023\pi}{4}$


$$\theta = \frac{-2023\pi}{4} = \frac{-2024\pi}{4} + \frac{\pi}{4} = \frac{\pi}{4} + 2k\pi$$

(b) Placer l'angle θ sur le cercle trigonométrique ci-dessous

2. Résoudre sur $[0, 2\pi]$ l'inéquation suivante : $\cos(x) \le -\frac{1}{2}$

On place les points d'abscisse -0,5 sur le cercle trigonométrique. Ces points correspondnet aux angles $\frac{2\pi}{3}$ et $\frac{4\pi}{3}$.

La partie du cercle qui donne les solutions à l'inéquation est $\left[\frac{2\pi}{3}; \frac{4\pi}{3}\right]$.

3. (a) Simplifier
$$A = \sin\left(\frac{9\pi}{2} - x\right)$$

$$A = \sin\left(\frac{9\pi}{2} - x\right)$$

$$= \sin\left(\frac{\pi}{2} - x\right)$$

$$= \sin\left(\frac{\pi}{2}\right)\cos(x) - \cos\left(\frac{\pi}{2}\right)\sin(x)$$

$$= \cos(x)$$

- (b) Résoudre dans \mathbb{R} l'équation suivante : $\cos\left(2x + \frac{\pi}{3}\right) = \sin\left(\frac{9\pi}{2} x\right)$
- (c) Donner les solutions dans l'intervalle $[0, 2\pi]$
- 4. Déterminer :
- (a) $\arctan(-\sqrt{3})$ (b) $\arctan\left(\tan\left(\frac{\pi}{6}\right)\right)$ (c) $\arctan\left(\tan\left(\frac{2\pi}{3}\right)\right)$ (d) $\tan\left(\arctan\left(3\right)\right)$

Exercice 2

- 1. (a) Mettre la fonction $f(t) = \sqrt{3}\cos(2t) \sin(2t)$ sous la forme $A\sin(\omega t + \varphi)$ avec A > 0
 - (b) En déduire la période de f
 - (c) Déterminer la parité de f
- 2. (a) Prouver que : $\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$
 - (b) A l'aide de cette formule, déterminer la période de la fonction $g(t) = \cos(27\pi t)\cos(3\pi t)$
 - (c) Déterminer la parité de g

Les questions suivantes sont indépendantes :

1. La fonction $f_1(t) = 2\cos(3t) - \sin(3t)$ est-elle solution de l'équation différentielle suivante?

$$-2y'(t) - 3y(t) = 15\sin(3t)$$

- 2. Donner une équation différentielle linéaire du premier ordre admettant $f_2(t)=t^2+1$ comme solution
- 3. Donner une équation différentielle linéaire **homogène** du premier ordre admettant $f_3(t) = e^{-\frac{3t}{2}}$ comme solution
- 4. Résoudre les équations différentielles suivantes :

(a)
$$\begin{cases} 3y'(t) + y(t) = 0 \\ y(0) = 2 \end{cases}$$
 (b)
$$\begin{cases} y'(t) - 5y(t) = 10t^2 \\ y(0) = 1 \end{cases}$$

(b)
$$\begin{cases} y'(t) - 5y(t) = 10t^2 \\ y(0) = 1 \end{cases}$$

(c)
$$(3t+1)y'(t) - y(t) = 0$$

Exercice 4

1. Tracer sur l'intervalle [-6,6] la fonction f, définie sur \mathbb{R} et vérifiant toutes les propriétés suivantes :

$$\begin{cases} f(t) = \frac{2}{3}t - 2 \text{ sur } [0, 3] \\ f \text{ est paire} \\ f \text{ est 6-périodique} \end{cases}$$

2. Déterminer la parité des fonctions suivantes :

(a)
$$f_1(t) = 4$$

(b)
$$f_2(t) = 3t^2 - t$$

(c)
$$f_3(t) = \tan(t)$$

3. La dérivée d'une fonction paire est paire. Vrai ou Faux? Justifiez votre réponse!