Nom : Prénom : Groupe :

Mathématiques - Devoir Surveillé 2 - correction Vendredi 11 octobre 2024 - Durée : 1h15

Tout document et appareil électronique est interdit

Toute réponse doit être rigoureusement justifiée et une attention particulière sera portée à la rédaction et à la présentation.

Exercice 1

1. Pour chacun des angles, donner la mesure principale puis placer très précisément le point représentatif sur le cercle trigonométrique : $\theta_1 = \frac{292\pi}{3}$, $\theta_2 = \frac{-35\pi}{6}$ et $\theta_3 = \frac{364\pi}{16}$.

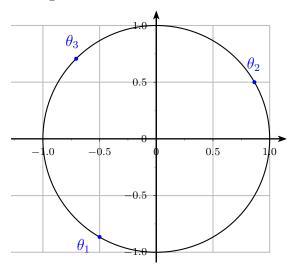
On détermine les mesures principales :

$$\theta_1 = \frac{292\pi}{3} = \frac{294\pi}{3} - \frac{2\pi}{3} = 98\pi - \frac{2\pi}{3} = -\frac{2\pi}{3} \quad [2\pi]$$

$$\theta_2 = \frac{-35\pi}{6} = \frac{-36\pi}{6} + \frac{\pi}{6} = -6\pi + \frac{\pi}{6} = \frac{\pi}{6} \quad [2\pi]$$

$$\theta_3 = \frac{364\pi}{16} = \frac{182\pi}{8} = \frac{91\pi}{4} = \frac{88\pi}{4} + \frac{3\pi}{4} = 22\pi + \frac{3\pi}{4} = \frac{3\pi}{4} \quad [2\pi]$$

On peut maintenant placer les angles sur le cercles



2. Donner, sans justifier, les valeurs de :

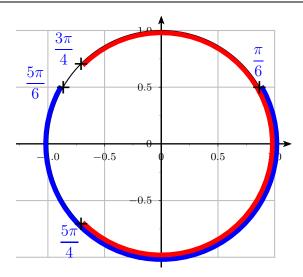
(a)
$$\cos\left(\frac{5\pi}{3}\right) = \cos\left(-\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

(b)
$$\sin\left(\frac{-5\pi}{6}\right) = \sin\left(\frac{-\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$$

(c)
$$\tan\left(\frac{-3\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1.$$

3. Représenter sur le cercle trigonométrique les angles x qui vérifient les 2 conditions ci-dessous puis écrire l'intervalle des solutions appartenant à $[0; 2\pi]$:

$$\cos(x) > -\frac{\sqrt{2}}{2} \text{ et } \sin(x) \le \frac{1}{2}$$



En rouge : les points qui vérifient : $\cos(x) > -\frac{\sqrt{2}}{2}$

En bleu : les points qui vérifient : $\sin(x) \le \frac{1}{2}$

Les points du cercle qui sont solutions sont donc les points en bleu et rouge

$$S = \left[0; \frac{\pi}{6}\right] \cup \left]\frac{5\pi}{4}; 2\pi\right]$$

Exercice 2 Les questions 1 à 4 suivantes sont indépendantes.

1. Mettre sous la forme $A\sin(\omega t - \varphi)$, avec A > 0, l'expression $s(t) = -7\cos(3t) + 7\sin(3t)$. On a $f(t) = a\cos(3t) + b\sin(3t)$ avec a = -7 et b = 7. On pose donc $A = \sqrt{a^2 + b^2} = \sqrt{98} = 7\sqrt{2}$.

Ainsi $\cos(\varphi) = \frac{b}{A} = \frac{7}{7\sqrt{2}} = \frac{\sqrt{2}}{2}$ et $\sin(\varphi) = \frac{a}{A} = \frac{-7}{7\sqrt{2}} = -\frac{\sqrt{2}}{2}$. Donc $\varphi = -\frac{\pi}{4}$.

Conclusion : on peut écrire $f(t) = 7\sqrt{2}\sin\left(3t - \frac{\pi}{4}\right)$.

2. Donner l'ensemble des nombres de $]-\pi;\pi]$ qui s'écrivent sous la forme $\frac{\pi}{6}+k\frac{\pi}{2}$ où $k\in\mathbb{Z}$. On peut remplacer k par -2, -1, 0, 1:

$$S = \left\{ \frac{-5\pi}{6}; \frac{-\pi}{3}; \frac{\pi}{6}; \frac{2\pi}{3} \right\}$$

3. Soit θ un angle tel que : $\theta \in \left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$ et $\sin(\theta) = \frac{5}{13}$. Donner la valeur exacte de $\cos(\theta)$.

On sait que $\cos^2(\theta) + \sin^2(\theta) = 1$.

Donc
$$\cos^2(\theta) = 1 - \sin^2(\theta) = 1 - \left(\frac{5}{13}\right)^2 = 1 - \frac{25}{169} = \frac{144}{169}$$

Donc $\cos(\theta) = \frac{12}{13}$ ou $\cos(\theta) = -\frac{12}{13}$

Or $\theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc son cosinus est négatif.

Donc $\cos(\theta) = -\frac{12}{13}$.

4. Résoudre sur $[0; 2\pi[: \sin(2x - \frac{\pi}{3}) = -\frac{1}{2}]$.

$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{1}{2} \iff \sin\left(2x - \frac{\pi}{3}\right) = \sin\left(-\frac{\pi}{6}\right)$$

$$\Leftrightarrow 2x - \frac{\pi}{3} = -\frac{\pi}{6} + 2k\pi \text{ ou } 2x - \frac{\pi}{3} = \pi + \frac{\pi}{6} + 2k\pi$$

$$\Leftrightarrow 2x = \frac{\pi}{3} - \frac{\pi}{6} + 2k\pi \text{ ou } 2x = \frac{\pi}{3} + \pi + \frac{\pi}{6} + 2k\pi$$

$$\Leftrightarrow 2x = \frac{\pi}{6} + 2k\pi \text{ ou } 2x = \frac{3\pi}{2} + 2k\pi$$

$$\Leftrightarrow x = \frac{\pi}{12} + k\pi \text{ ou } x = \frac{3\pi}{4} + k\pi$$

Les solutions sur $[0; 2\pi]$ sont donc :

$$S = \left\{ \frac{\pi}{12}; \frac{13\pi}{12}; \frac{3\pi}{4}; \frac{7\pi}{4} \right\}$$

Exercice 3 Répondre par vrai ou faux en justifiant :

1. Soient a et b deux réels : $a + b \neq 0 \Rightarrow a \neq 0$ ou $b \neq 0$.

On peut écrire la contraposée de l'implication :

$$a = 0$$
 et $b = 0 \Rightarrow a + b = 0$

Cette implication est vraie (de manière évidente) donc la proposition de la question 1 est **vraie** aussi.

2. $\forall x \in \mathbb{R} : \cos\left(x + \frac{\pi}{2}\right) + \cos\left(x + \frac{3\pi}{2}\right) = 0$

On peut simplifier l'expression:

$$\cos\left(x + \frac{\pi}{2}\right) + \cos\left(x + \frac{3\pi}{2}\right) = \cos\left(x + \frac{\pi}{2}\right) + \cos\left(x - \frac{\pi}{2}\right)$$
$$= -\sin(x) + \sin(x)$$
$$= 0$$

Donc la proposition est **vraie**.

3. $\forall x \in \mathbb{R} : \cos(2x) = 2\cos(x)$

Contre-exemple : pour x = 0 : $\cos(2x) = \cos(0) = 1$ et $2\cos(x) = 2\cos(0) = 2$.

Donc la proposition est **fausse**.

$$4. \sum_{k=1}^{5} k(k+1) = 70$$

Calculons la valeur de la somme :

$$\sum_{k=1}^{5} k(k+1) = 1(1+1) + 2(2+1) + 3(3+1) + 4(4+1) + 5(5+1) = 2+6+12+20+30 = 70$$

Donc l'églité est vraie.

Exercice 4 Les questions 1, 2 et 3 sont indépendantes.

- 1. Donner la contraposée de : « Si tu échoues à ton diplome, tu ne partiras pas en vacances » La contraposée s'écrit : « tu partiras en vacances ⇒tu n'as pas échoué à ton diplôme »
- 2. On considère la propriété $P_1: \forall x \in \mathbb{R} : \exists y \in \mathbb{R} \text{ tel que } xy = 1.$
 - (a) Donner la négation de P_1 . La négation de P_1 s'écrit $\overline{P_1}$: $\exists x \in \mathbb{R}$ tel que $\forall y \in \mathbb{R}$ $xy \neq 1$
 - (b) La propriété P_1 est elle vraie? La propriété P_1 est **fausse** car on peut trouver un conter-exemple : pour x = 0, il n'existe pas de y tel que xy = 1.
 - (c) La propriété non- P_1 est elle vraie? Puisque P_1 est fausse, alors non P_1 est vraie.
- 3. Ecrire avec un signe Sigma:

(a)
$$S_1 = \frac{2}{3} + \frac{4}{5} + \frac{6}{7} + \dots + \frac{40}{41} = \sum_{k=1}^{20} \frac{2k}{2k+1}$$

(b)
$$S_2 = 6 + 9 + 12 + \ldots + 90 = \sum_{k=2}^{30} 3k$$

Exercice 5 Déterminer (en expliquant le calcul ou la démarche) :

- 1. $\arctan(-\sqrt{3}) = -\frac{\pi}{3}$ car on sait que $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ et que $\tan(-x) = -\tan(x)$
- 2. $\arctan\left(\tan\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6} \operatorname{car} \frac{\pi}{6}$ est dans l'intervalle de réponse de arctan.
- 3. $\arctan\left(\tan\left(-\frac{2\pi}{3}\right)\right) = \arctan\left(\tan\left(-\frac{2\pi}{3} + \pi\right)\right)$ car on sait que $\tan(x + \pi) = \tan(x)$. donc $\arctan\left(\tan\left(-\frac{2\pi}{3}\right)\right) = \arctan\left(\tan\left(\frac{\pi}{3}\right)\right) = \frac{\pi}{3}$ car $\frac{\pi}{3}$ est dans l'intervalle de réponse de arctan.
- 4. $tan(\arctan(3)) = 3 car tan(\arctan(x) = x pour tout réel x.$