Nom: Prénom: Groupe:

Mathématiques - Devoir Surveillé 3 Vendredi 22 novembre 2024 - Durée : 1h00

Tout document et appareil électronique est interdit

Toute réponse doit être riquireusement justifiée et une attention particulière sera portée à la rédaction et à la présentation.

Exercice 1

- 1. (a) Mettre la fonction $f_1(t) = -4\sqrt{3}\cos(2t) + 4\sin(2t)$ sous la forme $A\sin(\omega t + \varphi)$ avec A > 0
 - (b) Déterminer la période et l'amplitude de f_1 .
- 2. On rappelle que, pour tout réels a et b on a: $\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) \cos(a+b))$. A l'aide de cette formule, déterminer la période de la fonction. $f_2(t) = \sin(27\pi t)\sin(3\pi t)$
- 3. Déterminer la période des fonctions suivantes :

(a)
$$f_3(t) = -2\sin\left(\frac{t}{4}\right)$$

(b)
$$f_4(t) = \cos(100\pi(t+0.01)) + 1$$

Exercice 2

1. Parmi les équations différentielles suivantes, dire celles qui sont homogènes, celles qui sont linéaires, celles qui sont d'ordre 1 et celles qui sont à coefficients constants.

(a)
$$ty'(t) + y(t) = -10\cos(5t)$$

(c)
$$y'(t) - 7y(t) + t^2 = 0$$

(b)
$$y'(t) \times y(t) = 0$$

(d)
$$y''(t) - y(t) = 0$$

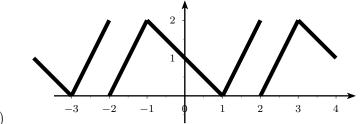
2. La fonction $f(t) = \cos(5t) - \sin(5t)$ est-elle solution de l'équation différentielle suivante?

$$y'(t) - 5y(t) = -10\cos(5t)$$

3. Donner une équation différentielle, linéaire, homogène admettant $g(t) = 3e^{-4t}$ comme solution.

Exercice 3 Résoudre les équations différentielles suivantes :

1.
$$\begin{cases} 3y'(t) + y(t) = 0 \\ y(0) = 2 \end{cases}$$

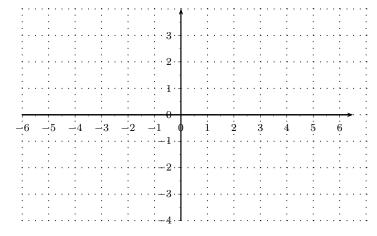

2.
$$\begin{cases} y'(t) - 5y(t) = 7e^{3t} \\ y(0) = 1 \end{cases}$$
 3. $(3t+1)y'(t) - y(t) = 0$

3.
$$(3t+1)y'(t) - y(t) = 0$$

Exercice 4

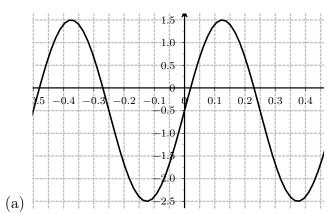
1. Déterminer la parité des fonctions suivantes :

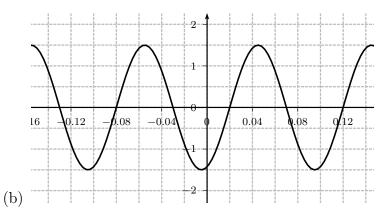
(a)
$$f_1(t) = -4$$



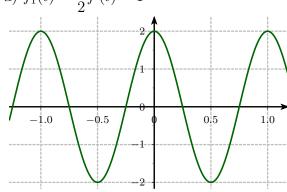
(b)
$$f_2(t) = t^5 + 6t^3 - 8t$$

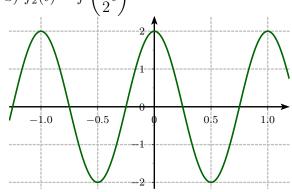
1/2


2. Tracer sur l'intervalle [-6,6] la fonction f, définie sur \mathbb{R} et vérifiant toutes les propriétés suivantes :

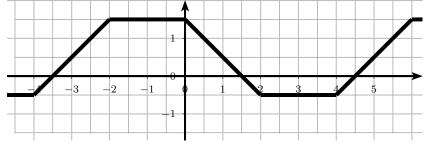

$$\begin{cases} f(t) = \frac{4}{3}t - 2 \text{ sur } [0, 3] \\ f \text{ est impaire} \\ f \text{ est 6-périodique} \end{cases}$$

Exercice 5


1. Les deux fonctions représentées ci-dessous sont de la forme $f(t) = A\sin(\omega t + \varphi) + C$. Déterminer dans chaque cas les valeurs de A, ω , φ et C



2. On a représenté la fonction $f(t)=2\cos(2\pi t)$ sur chacun des graphes ci-dessous. Représenter alors sur chaque graphiqe f_1 et f_2 :


a)
$$f_1(t) = \frac{1}{2}f(t) - 1$$

b)
$$f_2(t) = f\left(\frac{1}{2}t\right)$$

3. Sur le graphe ci-dessous on a représenté une fonction g de période 8. On pose $f_3(t) = f(t+a) + b$. Déterminer a et b pour que f_3 soit impaire puis la représenter sur le graphe.

